
 

 



Summary
     Audit Firm Guardian

     Prepared By Daniel Gelfand, Nicholas Chew, Zdravko Hristov,

        Osman Ozdemir, Mark Jonathas, Michael Lett

     Client Firm Foil

     Final Report Date January 13, 2025

Audit Summary
Foil engaged Guardian to review the security of its updates to the virtual gas marketplace. From the 
21st of October to the 4th of November, a team of 6 auditors reviewed the source code in scope. All 
findings have been recorded in the following report.

Issues Detected  Throughout the engagement 6 High/Critical issues were uncovered and promptly 
remediated by the Foil team. Several issues impacted the fundamental behavior of the protocol, 
following their remediation Guardian believes the protocol to uphold the functionality described for 
Foil.

Security Recommendation Given the number of High and Critical issues detected, Guardian 
supports a secondary security review of the protocol at a finalized frozen commit. 

For a detailed understanding of risk severity, source code vulnerability, and potential attack vectors, 
refer to the complete audit report below.

🔗  Blockchain network: Ethereum

✅  Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/foil-fuzzing
2

https://github.com/guardianaudits
https://github.com/GuardianAudits/foil-fuzzing


Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Invariants Assessed  …………………………………………………………………...  7

Findings & Resolutions …………..…………………………….………………………  11

Addendum

Disclaimer …………………………………………………………………..…………..… 50

About Guardian Audits ………………………………..………………………………… 51

3



Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Foil

Language Solidity

Codebase https://github.com/foilxyz/foil

Commit(s) Initial commit: 50373325e4ad7bb98382b5b4adce241a1ac1e770
Final commit:  5b3416a28dfaa24ba3844e10081e55425d0a286a

Delivery Date January 13, 2025

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ●   Critical 2 0 0 0 0 2

 ●   High 4 0 0 0 0 4

 ●   Medium 7 0 0 4 0 3

 ●   Low 23 0 0 6 1 16

https://github.com/foilxyz/foil


5

Vulnerability Classifications

Audit Scope & Methodology

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High ●   Critical ●   High ●   Medium

Likelihood: Medium ●   High ●   Medium ●   Low

Likelihood: Low ●   Medium ●   Low ●   Low

Impact
High Significant loss of assets in the protocol, significant harm to a group of users, or a core                    
.                    functionality of the protocol is disrupted.

Medium A small amount of funds can be lost or ancillary functionality of the protocol is affected. 
.                    The user or protocol may experience reduced or delayed receipt of intended funds.

Low Can lead to any unexpected behavior with some of the protocol's functionalities that is   
.                    notable but does not meet the criteria for a higher severity.

Likelihood
High The attack is possible with reasonable assumptions that mimic on-chain conditions,    
.                    and the cost of the attack is relatively low compared to the amount gained or the   
.    disruption to the protocol.

Medium An attack vector that is only possible in uncommon cases or requires a large amount of 
. capital to exercise relative to the amount gained or the disruption to the protocol.

Low Unlikely to ever occur in production.



6

Audit Scope & Methodology

Methodology

Guardian is the ultimate standard for Smart Contract security. An engagement with Guardian entails 
the following:

● Two competing teams of Guardian security researchers performing an independent review.
● A dedicated fuzzing engineer to construct a comprehensive stateful fuzzing suite for the 

project.
● An engagement lead security researcher coordinating the 2 teams, performing their own 

analysis, relaying findings to the client, and orchestrating the testing/verification efforts.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry 

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts 

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.

Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.



 Invariants Assessed

7

During Guardian’s review of Foil, fuzz-testing with Echidna was performed on the protocol’s 
main functionalities. Given the dynamic interactions and the potential for unforeseen edge 
cases in the protocol, fuzz-testing was imperative to verify the integrity of several system 
invariants.

Throughout the engagement the following invariants were assessed for a total of 5,000,000+ 
runs with a prepared Echidna fuzzing suite.

ID Description Passed Remediation Run Count

GLOBAL-01 The price of vGAS should always be in range 
of the configured min/max ticks. ✅ ✅ 5M+

GLOBAL-02 There should never be any liquidity outside of 
the [min, max] range of an epoch. ✅ ✅ 5M+

GLOBAL-03 The amount of vETH in the system, position 
manager & swap router should equal the max 
supply

✅ ✅ 5M+

GLOBAL-04 The amount of vGAS in the system, position 
manager & swap router should equal the max 
supply.

✅ ✅ 5M+

TRADE-01 The debt of a position should never be > the 
collateral of the position. ✅ ✅ 5M+

TRADE-02 Long positions have their debt in vETH and 
own vGAS ❌ ❌ 5M+

TRADE-03 Short positions have their debt in vGAS and 
own vETH. ❌ ❌ 5M+

TRADE-04 Trader should never have both 
borrowedVGas and borrowedVEth be 
non-zero.

✅ ✅ 5M+

TRADE-05 Trader's pending loss in ETH-worth should 
never exceed collateral put down (should 
never be in negative equity)

❌ ❌ 5M+

https://github.com/crytic/echidna


Invariants Assessed

8

ID Description Passed Remediation  Run Count

TRADE-06 after creating/modifying trade position, the 
depositedCollateralAmount > debtValue - 
tokensValue

✅ ✅ 5M+

TRADE-07 After creating a trade position deposited 
collateral should be non-zero ✅ ✅ 5M+

TRADE-08 After user closes a trade position, no vGAS, 
vETH, borrowed vGAS, borrowed vETH ✅ ✅ 5M+

TRADE-09 After creating a trader position, positionSize is 
non-zero. ✅ ✅ 5M+

TRADE-10 createTradePosition should create a unique 
positionId ✅ ✅ 5M+

LIQUID-01 The debt of a position should not be > the 
collateral of the position. ✅ ✅ 5M+

LIQUID-02 A open LP position should not own any vETH 
or vGAS. ✅ ✅ 5M+

LIQUID-03 After all LP positions have been closed, for the 
remaining trader positions: net shorts == net 
longs.

✅ ✅ 5M+

LIQUID-04 Position.depositedCollateralAmount should be 
at least the required collateral for their position 
if their position turned into a Trade type.

✅ ❌ 5M+

LIQUID-05 QuoteLiquidityPositionTokens should match 
how many tokens are borrowed and how much 
liquidity is added after creating an LP position 
with createLiquidityPosition

✅ ✅ 5M+

LIQUID-06 After creating an LP position, liquidity in the 
Uni pool increases ✅ ✅ 5M+



Invariants Assessed

9

ID Description Passed Remediation  Run Count

LIQUID-07 After increasing an LP position, liquidity in 
the Uni pool increases ✅ ✅ 5M+

LIQUID-08 After decrease an LP position, liquidity in the 
Uni pool decreases ❌ ✅ 5M+

LIQUID-09 After partial decrease an LP Position, should 
not get InsufficientColateral revert 
(unexpected in this case)

❌ ❌ 5M+

LIQUID-10 createLiquidityPosition should create a 
unique positionId ✅ ✅ 5M+

SETTLE-01 It should always be possible to settle all 
positions after the epoch is settled. ❌ ✅ 5M+

SETTLE-02 After settlement with settlePosition, position 
should not have any borrowedvETH nor 
borrowedVGAS, and no vGAS nor vETH 
(cleared out position)

✅ ✅ 5M+

SETTLE-03 Settlement should not revert with 
ERC20InsufficientBalance. ❌ ❌ 5M+

SETTLE-04 Settlement should not panic underflow ❌ ✅ 5M+

EPOCH-01 Position with non zero loan amount for lp 
should always have non-zero collateral 
required.

✅ ✅ 5M+

VLT-01 Vault functions should never revert with 
ERC20InsufficientBalance error - ✅ 5M+

VLT-02 totalPendingDeposits should be sum of  
deposit requests - 
withdrawRequestDeposit(s)

- ❌ 5M+



Invariants Assessed

10

ID Description Passed Remediation  Run Count

VLT-03 totalPendingWithdrawals should be sum of 
requestRedeem(s) - 
withdrawRequestRedeem(s)

- ❌ 5M+

VLT-04 pendingSharesToBurn should always be less 
than or equal to total supply of shares - ✅ 5M+

VLT-05 Pending transaction requested epoch should 
never be greater than current epoch - ✅ 5M+

VLT-06 Vault should not Panic - ❌ 5M+

VLT-07 mint/deposit should decrease balance of 
shares in the Vault contract, total supply 
should stay the same

- ✅ 5M+

VLT-08 redeem/withdraw should decrease total supply - ✅ 5M+



Findings & Resolutions

11

ID Title Category    Severity Status

C-01 Collateral Removed On Position 
Adjustment Logical Error ●  Critical Resolved

C-02 tradeRatio Can Be Manipulated 
To Wipe Debt Logical Error ●  Critical Resolved

H-01 Last User Of Epoch Cannot 
Withdraw Collateral Logical Error ●  High Resolved

H-02 Collateral Returned Despite Bad 
Debt Logical Error ●  High Resolved

H-03 Insolvency Because Of 
tradeRatio Rounding Rounding ●  High Resolved

H-04 Settlement Failure Due To 
Underflow DOS ●  High Resolved

M-01 Fee Collector Can Horde Fees Logical Error ●  Medium Acknowledged

M-02 _checkOnERC721Received Bool 
Is Not Checked Validation ●  Medium Resolved

M-03 Incorrect deltaCollateral Check 
When Negative Validation ●  Medium Resolved

M-04 Rightful Disputer Might Lose 
Bonds Validation ●  Medium Resolved

M-05 Decreasing LP May Require 
Collateral DOS ●  Medium Acknowledged

M-06 Using LP For More Efficient 
Trades Logical Error ●  Medium Acknowledged

M-07 Dangerous Price Used For 
Resolution Callback Logical Error ●  Medium Acknowledged



Findings & Resolutions

12

ID Title Category    Severity Status

L-01 Frontrunning Pool Creation DOS ●  Low Partially Resolved

L-02 Overflow In DecimalPrice Library Arithmetic Error ●  Low Resolved

L-03 Unused Function Unused code ●  Low Resolved

L-04 Redundant Function Call Informational ●  Low Resolved

L-05 FeeCollectorNft Is Transferable Informational ●  Low Acknowledged

L-06 Missing unchecked In Uniswap 
Libraries Arithmetic Error ●  Low Resolved

L-07 Disputer Never Updated Informational ●  Low Resolved

L-08 Inaccurate Custom Error Informational ●  Low Resolved

L-09 Authorized Addresses Can’t 
Modify Positions Informational ●  Low Resolved

L-10 QuoterV2 Should Not Be Called 
On-Chain Informational ●  Low Acknowledged

L-11 Typo Typo ●  Low Resolved

L-12 Insufficient startingSqrtPriceX96 
Validation Validation ●  Low Acknowledged

L-13 View Function Should Account 
For Loss Logical Error ●  Low Resolved



Findings & Resolutions

13

ID Title Category    Severity Status

L-14 Unnecessary Casting Informational ●  Low Resolved

L-15 Unexpected Revert With Small 
Amounts DOS ●  Low Resolved

L-16 MarketNotInitialized Is Never 
Thrown Informational ●  Low Resolved

L-17 Fee Collectors Can Block 
Initialization Warning ●  Low Acknowledged

L-18 bondAmount Is Not Sufficiently 
Validated Warning ●  Low Resolved

L-19 Uniswap tickSpacing May Be 
Changed Warning ●  Low Acknowledged

L-20 Traders Unable To Close 
Profitable Position Logical Error ●  Low Acknowledged

L-21 tokenById Revert Reason Error string ●  Low Resolved

L-22 Comment Typo Logical Error ●  Low Resolved

L-23 Epoch End Time Off-by-One Typo ●  Low Resolved



C-01 | Collateral Removed On Position Adjustment

Description

Fee collectors can create under-collateralized positions and collateralize them using 
depositCollateral.

However, when calling increaseLiquidityPosition or decreaseLiquidityPosition, the zero collateral 
requirement for fee collectors causes updateCollateral to mistakenly remove and transfer all 
collateral back to the fee collector.

This allows fee collectors to withdraw collateral after depositing, potentially avoiding any loss at the 
end of the epoch. This is against protocol spec that the fee collector should never be able to back 
out of provided collateral, even if adjusting positions.

Recommendation

updateCollateral should not be triggered for fee collectors when modifying a position or position 
modification should be restricted during the epoch.

Resolution

Foil Team: The issue was resolved in PR#155.

14

Category Severity Location Status

Logical Error ●  Critical Position.sol Resolved

PoC

https://github.com/foilxyz/foil/pull/155
https://github.com/GuardianAudits/foil-1/pull/3/files


C-02 | tradeRatio Can Be Manipulated To Wipe Debt

Description

When modifying a trade position, the output of a swap is used to calculate tradeRatio, which serves 
as a proxy price to determine the value of vGas. This ratio is essential for calculating PnL and setting 
the borrowed amounts for the new position.

However, if a small (dust) amount of vGas is swapped, amountIn or amountOut for vETH may round 
to zero due to Uniswap’s rounding behavior, causing tradeRatio to also be zero. This allows for 
potential exploitation: in a long position, borrowedVEth becomes zero, effectively wiping the 
position's debt and creating bad debt in the system.

Attack Scenario:
1. Alice opens a long position.
2. Alice decreases the position by 1 wei, setting tradeRatio to zero, which is below minPrice, creating 
bad debt by wiping all borrowedVEth.
3. Alice closes the position, recovering all previously deposited collateral plus additional funds, 
effectively stealing from the system.

Recommendation

If the trade price is below or above the min or max price for a pool, then revert.

Resolution

Foil Team: The issue was resolved in PR#161.

15

Category Severity Location Status

Logical Error ●  Critical TradeModule.sol Resolved

PoC

https://github.com/foilxyz/foil/pull/161
https://github.com/GuardianAudits/foil-1/pull/5/files


H-01 | Last User Of Epoch Cannot Withdraw Collateral

Description

In LiquidityModule._closeLiquidityPosition, collected amounts are rounded up by adding 1 wei to 
offset Uniswap’s rounding when opening a position.

However, borrowed amounts may be zero (e.g., when adding liquidity outside the current price tick), 
and collected amounts can also be zero, depending on the price tick.

By adding 1 wei, users may withdraw more collateral than they initially deposited. Over time, this 
leads to the last user in an epoch being unable to withdraw due to insufficient collateral.

This behavior can also be exploited by malicious users with the following steps:
• Provide liquidity above the current price tick, so only vGas is borrowed and no vETH.
• Immediately decrease liquidity, collecting all borrowed vGas plus 1 wei of vETH.
• The 1 wei of vETH is added to the user's deposited collateral and then withdrawn.

Recommendation

1. If collected amount is zero, do not add the 1 wei adjustment.
2. Modify settlePosition to allow payouts of the contract's remaining balance when the exact 
collateral amount is insufficient, preventing the last withdrawal from reverting if the balance is short 
by a few wei.

Resolution

Foil Team: The issue was resolved in PR#150.

16

Category Severity Location Status

Logical Error ●  High LiquidityModule.sol Resolved

PoC

https://github.com/foilxyz/foil/pull/150
https://github.com/GuardianAudits/foil-fuzzing/blob/addf2fcff18ec9adfdc6960d7426f0a1e4595dfd/packages/protocol/test/fuzzing/FoundryPlayground.sol#L594-L609


H-02 | Collateral Returned Despite Bad Debt

Description

When a trader is closing out a position, if the loss exceeds collateral deposited then this case is 
entered. As bad debt has been incurred, the collateral should be reduced to zero but currently 
depositedCollateralAmount remains unchanged.

The extraCollateralRequired would cover the losses, but however it is only taken into account if the 
trader is re-opening a new position.

So, If the trader was closing the position (i.e. size = 0), then all deposited collateral is returned to the 
trader implying losses are borne by the protocol/other LPs and traders.

Recommendation

Change the logic to:

Resolution

Foil Team: The issue was resolved in PR#164.

17

Category Severity Location Status

Logical Error ●  High TradeModule.sol Resolved

PoC

if (collateralLoss > params.oldPosition.depositedCollateralAmount)  

output.position.depositedCollateralAmount = 0; 

extraCollateralRequired = collateralLoss - params.oldPosition.depositedCollateralAmount;

https://github.com/foilxyz/foil/pull/164
https://github.com/GuardianAudits/foil-1/pull/5/files


H-03 | Insolvency Because Of tradeRatio Rounding

Description

When _quoteOrTrade is called and PnL is calculated, the tradeRatio experiences precision loss 
because of rounding down when performing divDecimal. While this is fine for longs, it's not for 
shorts.

That's because the tradeRatio is a fill price and if the fill price is lower, shorts will have made a profit. 
In result, when the PnL for shorts is calculated the trader will experience a smaller loss, leaving the 
system with fewer funds available than it should have in order to operate.

This can be most visible if a position has only borrowedVGas (short) and makes a trade to close the 
position.  Because the entirety of the debt is being paid off, it would be expected that the vEthToZero 
would at least match the runtime.tradedVEth.

However, the vEthToZero would be slightly less due to the tradeRatioD18 rounding, and less 
collateral being held in the Foil contract. Later, when LPs try to close or settle their position, they will 
not be able to do so.

The contract will try to send them the amount they have earned, but this amount is not fully backed 
by the losses of the traders and the transaction will revert with ERC20: transfer amount exceeds 
balance.

Recommendation

In case of a short position, round the tradeRatio up to provide a worse fill price when going towards 
the long direction.

Resolution

Foil Team: The issue was resolved in PR#168.

18

Category Severity Location Status

Rounding ●  High TradeModule.sol Resolved

PoC

https://github.com/foilxyz/foil/pull/168
https://github.com/GuardianAudits/foil-fuzzing/commit/c474aa3613df97c83793af92b37be0c29a653562


H-04 | Settlement Failure Due To Underflow

Description

When settling a liquidity position, getCurrentPositionTokenAmounts is called to retrieve the 
corresponding vGas and vETH token amounts of the position, which are then later rebalanced during 
position.settle.

The rebalancing process converts everything to ETH, adding all value to depositedCollateral and 
subtracting all debt from depositedCollateral.

However, the calculation during getCurrentPositionTokenAmounts rounds down, which can cause 
the total value of the position (including the collateral) to be less than the total debt in some cases.

This results in the settlement reverting due to an underflow in the following line: 
self.depositedCollateralAmount = self.borrowedVEth.

Recommendation

Rounding should be accounted for when calculating the required collateral. Consider adjusting 
loanAmount0 and loanAmount1 up by 1 wei during calculation.

Resolution

Foil Team: The issue was resolved in PR#174.

19

Category Severity Location Status

DOS ●  High Position.sol: 286 Resolved

PoC

https://github.com/foilxyz/foil/pull/174
https://github.com/GuardianAudits/foil-fuzzing/blob/9d5aa754651b3a688d8ba6b67577affb9dabde87/packages/protocol/test/fuzzing/FoundryPlayground.sol#L290


M-01 | Fee Collector Can Horde Fees

Description

Fee collectors can create under-collateralized positions and collateralize them using 
depositCollateral.

Currently, there are no restrictions preventing a fee collector from creating an oversized liquidity 
position, which can monopolize all available liquidity and hoard fees, preventing other fee collectors 
from benefiting.

Recommendation

Impose limits on the size of liquidity positions that fee collectors can create to ensure fair 
distribution of fees.

Resolution

Foil Team: Acknowledged.

20

Category Severity Location Status

Logical Error ●  Medium LiquidityModule.sol Acknowledged



M-02 | _checkOnERC721Received Bool Is Not Checked

Description

While creating a position in the liquidity or trading modules, _checkOnERC721Received function is 
called and then the position NFT is minted.

However, _checkOnERC721Received does not revert on failure but only returns false. Return value is 
not checked and positions can be minted to contracts that can't hold NFTs

Recommendation

Check the return value of the function before continuing.

Resolution

Foil Team: The issue was resolved in PR#149.

21

Category Severity Location Status

Validation ●  Medium LiquidityModule.sol: 37, TradeModule.sol: 52 Resolved

https://github.com/foilxyz/foil/pull/149


M-03 | Incorrect deltaCollateral Check When Negative

Description

Users provide deltaCollateralLimit when modifying their trade positions. While a positive 
deltaCollateralLimit indicates the maximum amount a user wants to provide to the protocol, a 
negative deltaCollateralLimit represents the minimum collateral amount a user wishes to receive 
from the protocol when decreasing or closing a position.

However, the negative case in _checkDeltaCollateralLimit is incorrect and behaves oppositely. It 
reverts when deltaCollateralLimit < 0 && deltaCollateral < deltaCollateralLimit. The user-provided 
value functions as a maximum limit instead of a minimum limit, resulting in the user receiving less 
than intended all the time.

Recommendation

Change deltaCollateral < deltaCollateralLimit to deltaCollateral > deltaCollateralLimit.

Resolution

Foil Team: The issue was resolved in PR#159.

22

Category Severity Location Status

Validation ●  Medium TradeModule.sol: 348 Resolved

https://github.com/foilxyz/foil/pull/159


M-04 | Rightful Disputer Might Lose Bonds

Description

Currently, there is no mechanism that checks whether there is already an ongoing dispute or not 
while submitting a price. Asserter can submit a new price after an initial incorrect submission 
without waiting a dispute to resolve in 48-96 hours.

This would cause disputer to lose their bonds since the settlement will fail at this line as the 
assertionIds won't match.

Recommendation

Do not allow submitting new price if there is already an ongoing dispute.

Resolution

Foil Team: The issue was resolved in PR#169.

23

Category Severity Location Status

Validation ●  Medium UMASettlementModule.sol Resolved

https://github.com/GuardianAudits/foil-1/blob/50373325e4ad7bb98382b5b4adce241a1ac1e770/packages/protocol/src/market/modules/UMASettlementModule.sol#L156
https://github.com/foilxyz/foil/pull/169


M-05 | Decreasing LP May Require Collateral

Description

Whenever a position is modified in position.updateValidLp, the required collateral for that position is 
calculated and compared against the current available collateral.

The collateral is calculated by using two values - debitEth and creditEth (debit is taken from the user 
and credit is given to them).

When removing a small amount of liquidity, it's possible that the decrease in creditEth  is larger than 
the decrease in debitEth, which would lead to increased collateral requirements.

Since additionalCollateral is 0 when decreasing a position, the transaction will revert with 
InsufficientCollateral().

Recommendation

Allow the user to supply additional collateral when decreasing their position.

Resolution

Foil Team: Acknowledged.

24

Category Severity Location Status

DOS ●  Medium Epoch.sol Acknowledged



M-06 | Using LP For More Efficient Trades

Description

Instead of opening a long position in the TradeModule to gain exposure to vGas, traders can use the 
LiquidityModule for a more efficient strategy.

By adding liquidity below the current price with a lower tick set to their desired entry price, traders 
can effectively create a limit order.

When the price reaches this minimum tick, the LP position converts fully to vGas, which can then be 
closed and transitioned into a Trade position.

Since LP positions have reduced collateral requirements (no swap fees nor price impact on entry), 
this approach allows for the same vGas position with less collateral.

Recommendation

Consider if this behavior should be prevented from a protocol perspective. One possible solution 
would be to fully close an LP's position in _closeLiquidityPosition instead of the transition to a Trade 
position, although low liquidity environments would have to be taken into consideration, and slippage 
protection would have to be appropriately handled.

Resolution

Foil Team: Acknowledged.

25

Category Severity Location Status

Logical Error ●  Medium LiquidityModule.sol Acknowledged

PoC

https://github.com/GuardianAudits/foil-1/pull/6/files


M-07 | Dangerous Price Used For Resolution Callback

Description

If settlement.settlementPriceD18 in assertionResolvedCallback()  is outside the acceptable price 
range for the given epoch, the new price for the epoch will be capped to either min or max with 
function setSettlementPriceInRange.

However, resolutionCallback() is still called with the original settlement.settlementPriceD18 and not 
the newly set price of the epoch. Whenever the settlement price is outside the acceptable range, the 
callback will receive an incorrect price.

The protocol team plans to create new epochs with that price which will lead to an epoch starting 
with prices outside the valid range.

Recommendation

Pass epoch.settlementPriceD18 instead of settlement.settlementPriceD18 to 
assertionResolvedCallback().

Resolution

Foil Team: In Vault we use the resolution settlementPrice (not capped) to create the next epoch and 
compute new bounds.

26

Category Severity Location Status

Logical Error ●  Medium UMASettlementModule.sol Acknowledged



L-01 | Frontrunning Pool Creation

Description

When a new epoch is created by calling Epoch.createValid() two virtual tokens are deployed and 
used to create a new UniswapV3Pool.

The virtual tokens are deployed by the Epoch contract via the CREATE2 opcode. The owner of the 
Foil market will pass a salt parameter which will determine the address of the newly deployed 
tokens.

A malicious entity can frontrun the epoch creation transaction and use the salt passed in order to 
calculate the addresses of the two virtual tokens. These addresses can then be used to call 
UniswapV3Factory.createPool().

The pool for the two tokens will be created and when the Foil owner's transaction calls createPool(),  
it will revert because the pool already exists and the epoch won't be created. This frontrunning can 
be executed to stop any epoch creation.

Recommendation

Be sure to use a private network RPC when submitting the create transaction.

Resolution

Foil Team: Partially Resolved.

27

Category Severity Location Status

DOS ●  Low Epoch.sol Partially Resolved

https://github.com/Uniswap/v3-core/blob/main/contracts/UniswapV3Factory.sol#L35-L51


L-02 | Overflow In DecimalPrice Library

Description

The function sqrtRatioX96ToPrice is used to obtain price in several parts of the codebase. The issue 
lies with performing a square of two uint160 numbers which could overflow uint256. Overflow 
occurs when sqrtRatioX96 exceeds 2^128 - 1.

Recommendation

Perform >> 96 shift operation on sqrtRatioX96 first before doing square operation. Alternatively, use 
Uniswap's FullMath.mulDiv which handles the intermediate overflow case.

Resolution

Foil Team: The issue was resolved in PR#168.

28

Category Severity Location Status

Arithmetic Error ●  Low DecimalPrice.sol Resolved

https://github.com/foilxyz/foil/pull/168


L-03 | Unused Function

Description

The Position.getRequiredCollateral() function is not used anywhere

Recommendation

Consider removing it if unnecessary

Resolution

Foil Team: The issue was resolved in PR#168.

29

Category Severity Location Status

Unused code ●  Low Position.sol Resolved

https://github.com/foilxyz/foil/pull/168


L-04 | Redundant Function Call

Description

In quoteModifyTraderPosition, validateNotSettled is called redundantly twice. Additionally, the 
validateSettlementSanity function in Epoch.sol is unused and can be removed.

Recommendation

Remove the redundant validateNotSettled call and delete the unused validateSettlementSanity 
function.

Resolution

Foil Team: The issue was resolved in PR#168.

30

Category Severity Location Status

Informational ●  Low TradeModule.sol Resolved

https://github.com/foilxyz/foil/pull/168


L-05 | FeeCollectorNft Is Transferable

Description

The FeeCollectorNft is used to assert a user is a fee collector. Fee collectors are given special 
privileges that allow them to take under collateralized loans.

The FeeCollectorNft is transferable, and a malicious fee collector could take advantage of this to sell 
their FeeCollectorNft to users so they can take under collateralized loans, and jeopardize the health 
of the protocol.

Recommendation

Do not allow fee collectors to transfer FeeCollectorNfts.

Resolution

Foil Team: Acknowledged.

31

Category Severity Location Status

Informational ●  Low FeeCollectorNft.sol Acknowledged



L-06 | Missing unchecked In Uniswap Libraries

Description

The FullMath and TickMath libraries were adapted from Uniswap, which relies on overflow wrapping 
behavior available only in Solidity versions <0.8. Foil’s implementation targets Solidity versions 
>0.8.2, where unchecked arithmetic is not default.

Without wrapping these functions with unchecked, phantom overflows may occur, causing 
unexpected reverts when intermediate values exceed 256 bits.

For example, mulDiv(type(uint).max, type(uint).max, type(uint).max) would revert in Solidity >0.8 but 
return type(uint).max in older versions.

Recommendation

Wrap all relevant function bodies in unchecked to prevent phantom overflows. See the Uniswap v0.8 
library implementation for reference: 

https://github.com/Uniswap/v3-core/blob/0.8/contracts/libraries/FullMath.sol

Resolution

Foil Team: The issue was resolved in PR#168.

32

Category Severity Location Status

Arithmetic Error ●  Low FullMath.sol, TickMath.sol Resolved

https://github.com/Uniswap/v3-core/blob/0.8/contracts/libraries/FullMath.sol
https://github.com/foilxyz/foil/pull/168


L-07 | Disputer Never Updated

Description

When a settlement price is submitted, disputer is set as address(0). However, the disputer is never 
updated in the even if a dispute happens and will remain as address(0).

Recommendation

Consider removing disputer as it is never used in the codebase or update it by getting the address 
from the oracle contract.

Resolution

Foil Team: The issue was resolved in PR#169.

33

Category Severity Location Status

Informational ●  Low UMASettlementModule.sol: 113-125 Resolved

https://github.com/foilxyz/foil/pull/169


L-08 | Inaccurate Custom Error

Description

Epoch.validateNotSettled() will revert with EpochNotSettled if the epoch has expired and is not 
settled. This is slightly inaccurate because the main reason the revert happens is because the epoch 
has expired.

Recommendation

Consider changing the error to EpochExpired

Resolution

Foil Team: The issue was resolved in PR#168.

34

Category Severity Location Status

Informational ●  Low Epoch.sol Resolved

https://github.com/foilxyz/foil/pull/168


L-09 | Authorized Addresses Can’t Modify Positions

Description

Currently, only the position owners can modify liquidity or trade positions. However, since positions 
are NFTs, users can assign operators or approve other addresses to manage their NFTs. An 
operator, even if authorized, cannot modify users' positions.

Additionally, the error message during the ownership check is NotAccountOwnerOrAuthorized, which 
implies that authorized addresses should be able to modify positions.

Recommendation

Consider allowing authorized addresses to modify positions.

Resolution

Foil Team: The issue was resolved in PR#169.

35

Category Severity Location Status

Informational ●  Low Global Resolved

https://github.com/foilxyz/foil/pull/169


L-10 | QuoterV2 Should Not Be Called On-Chain

Description

quoteCreateTraderPosition() and quoteModifyTraderPosition() are both functions that are meant to 
be used to quote prices, however neither of them are marked as view functions. They cannot be 
marked as view functions because they use IQuoterV2.

Uniswaps documentation on IQuoterV2 states, “These functions are not marked view because they 
rely on calling non-view functions and reverting to compute the result. They are also not gas efficient 
and should not be called on-chain.”

This will lead to users having to pay gas costs if these functions are called.

Recommendation

Document to users that they should only call quoteCreateTraderPosition() and 
quoteModifyTraderPosition() off-chain.

Resolution

Foil Team: Acknowledged.

36

Category Severity Location Status

Informational ●  Low Trade.sol: 57 & 126 Acknowledged



L-11 | Typo

Description

The Natspec comment above the Epoch.getCollateralRequirementsForTrade function has a typo: 
“Gets the reuired collateral amount…”

Recommendation

Update the comment.

Resolution

Foil Team: The issue was resolved in PR#168.

37

Category Severity Location Status

Typo ●  Low Epoch.sol: 231 Resolved

https://github.com/foilxyz/foil/pull/168


L-12 | Insufficient startingSqrtPriceX96 Validation

Description

An Epoch is meant to have it's price bounded between its minPriceD18 and maxPriceD18. Upon 
creation, the owner passes a startingSqrtPriceX96 parameter to initialize the epoch's pool with. This 
price is not validated to be in the allowed range which allows a pool creation with invalid price.

Recommendation

Validate the startingSqrtPriceX96 variable.

Resolution

Foil Team: Later will be done by the vault, so will be secure.

38

Category Severity Location Status

Validation ●  Low Epoch.sol Acknowledged



L-13 | View Function Should Account For Loss

Description

The function getPositionCollateralValue should return the current value of a position. However, in the 
current implementation it only accounts for gains and not losses, therefore returning an inaccurate 
value if it is a losing position.

Recommendation

Do not cap totalNetValue to a minimum of zero, and subtract any losses from depositedCollateral.

Resolution

Foil Team: The issue was resolved in PR#170.

39

Category Severity Location Status

Logical Error ●  Low ViewsModule.sol: 188 Resolved

https://github.com/foilxyz/foil/pull/170


L-14 | Unnecessary Casting

Description

When an epoch is created, epoch.pool is assigned the IUniswapV3Pool value of the newly deployed 
pool. After that, epoch.pool is again casted to IUniswapV3Pool, which is redundant since it's already 
a variable of that type.

Recommendation

You can use epoch.pool without casting.

Resolution

Foil Team: The issue was resolved in PR#168.

40

Category Severity Location Status

Informational ●  Low Epoch.sol Resolved

https://github.com/GuardianAudits/foil-2/blob/50373325e4ad7bb98382b5b4adce241a1ac1e770/packages/protocol/src/market/storage/Epoch.sol#L133
https://github.com/GuardianAudits/foil-2/blob/50373325e4ad7bb98382b5b4adce241a1ac1e770/packages/protocol/src/market/storage/Epoch.sol#L144
https://github.com/foilxyz/foil/pull/168


L-15 | Unexpected Revert With Small Amounts

Description

When modifying positions in the TradeModule, the Trade.swapOrQuoteTokensExactIn function is 
called, which subsequently calls the Uniswap swap router.

The swap router performs the swap within the Uniswap pool, and the pool then invokes the 
uniswapV3SwapCallback function of the router.

The uniswapV3SwapCallback function expects at least one of the delta amounts to be greater than 
zero. However, if the trade amounts are very small, the swap steps in the Uniswap pool can result in 
both delta amounts being zero, which causes uniswapV3SwapCallback to revert.

Therefore, it is possible for a user to create a small trade e.g. long 1 wei vGas, and then be unable to 
close it due to the swap amounts rounding down in Uniswap when calculating swap steps.

This will ultimately cause a revert within the uniswapV3SwapCallback: require(amount0Delta > 0 || 
amount1Delta > 0);. Consequently, a user has a position they are unable to close.

Recommendation

Consider implementing minimum trade sizes and/or documenting this behavior.

Resolution

Foil Team: The issue was resolved in PR#154.

41

Category Severity Location Status

DOS ●  Low Trade.sol: 73 Resolved

https://github.com/foilxyz/foil/pull/154


L-16 | MarketNotInitialized Is Never Thrown

Description

The onlyOwner modifier in ConfigurationModule should revert with the MarketNotInitialized() error if 
the owner of the market is not set.

However, the onlyOwner modifier first checks if the msg.sender is the current market owner and if 
they are not, the transaction will revert with OnlyOwner() error.

In the case where the market is not initialized, i.e owner == address(0), the revert reason will always 
be OnlyOwner(), since nobody can send a call from address(0). In result, the MarketNotInitialized() 
error will never be used.

Recommendation

Switch the order of the two ifs.

Resolution

Foil Team: The issue was resolved in PR#168.

42

Category Severity Location Status

Informational ●  Low ConfigurationModule.sol Resolved

https://github.com/foilxyz/foil/pull/168


L-17 | Fee Collectors Can Block Initialization

Description

ConfigurationModule.initializeMarket() is used to create the market. It also mints the FeeCollector 
NFT to the fee collectors. If any of them don't support receiving NFTs or revert intentionally, the 
market won't be created.

Recommendation

Be aware of this situation. If this happens, you can call initializeMarket again, but this time without 
the specific fee collector.

Resolution

Foil Team: Acknowledged.

43

Category Severity Location Status

Warning ●  Low ConfigurationModule.sol Acknowledged



L-18 | bondAmount Is Not Sufficiently Validated

Description

Epoch.validateEpochParams()  validates that the bondAmount should be a positive number. 
However, it should be at least as big as the result of the getMinimumBond() function of the UMA 
oracle. Otherwise, the assertions will not be accepted.

Recommendation

Make sure to pass a valid bondAmount when creating the market.

Resolution

Foil Team: The issue was resolved in PR#172.

44

Category Severity Location Status

Warning ●  Low Market.sol Resolved

https://github.com/foilxyz/foil/pull/172


L-19 | Uniswap tickSpacing May Be Changed

Description

Market.getTickSpacingForFee() returns the Uniswap tick spacing associated with the given fee tier. 
The tick spacings are hardcoded, but the Uniswap Factory has a function enableFeeAmount() which 
allows the owner to change the fee tiers. If this happens, the Foil contracts may use stale data.

Recommendation

Be aware of the risk.

Resolution

Foil Team: Acknowledged.

45

Category Severity Location Status

Warning ●  Low Market.sol Acknowledged

https://github.com/Uniswap/v3-core/blob/d8b1c635c275d2a9450bd6a78f3fa2484fef73eb/contracts/UniswapV3Factory.sol#L61C14-L72


L-20 | Traders Unable To Close Profitable Position

Description

Fee Collectors opened LP positions at the beginning of an epoch and deposit collateral after they've 
earned fees. This collateral could be streamed in periodically or provided in bulk at settlement.

Due to the under-collateralized LP positions, traders may find themselves unable to exit profitable 
positions until Fee Collectors deposit collateral. As Fee Collectors are expected to hold large LP 
positions, this may affect a large group of traders.

This leads to temporarily locked funds and potential loss of yield for traders who are unable to close 
a profitable position promptly.

Recommendation

Consider implementing a minimum deposit amount for fee collectors. Or else, document this risk for 
users.

Resolution

Foil Team: Acknowledged.

46

Category Severity Location Status

Logical Error ●  Low Global Acknowledged



L-21 | tokenById Revert Reason

Description

ERC721EnumerableStorage.tokenByIndex() reverts with a custom error if a non existent token was 
passed. It does so when index > totalSupply(). Because the index of allTokens starts from 0, this 
statement will not catch all possible cases.

For example, when totalSupply is 1, there is only 1 token in the allTokens array, at index 0 and index 1 
is empty. If we call tokenByIndex(1) it won't enter the if statement and will revert with index out of 
bounds error instead of the custom error.

Recommendation

Change the condition to index >= totalSupply()

Resolution

Foil Team: The issue was resolved in PR#169.

47

Category Severity Location Status

Error string ●  Low ERC721EnumerableStorage.sol Resolved

https://github.com/foilxyz/foil/pull/169


L-22 | Comment Typo

Description

The comment // net vEth from oritinal positon minus the vEth to zero misspells “original”.

Recommendation

Correct the typo.

Resolution

Foil Team: The issue was resolved in PR#168.

48

Category Severity Location Status

Logical Error ●  Low TradeModule.sol Resolved

https://github.com/foilxyz/foil/pull/168


L-23 | Epoch End Time Off-by-One

Description

Epoch trade and liquidity activity is prevented once the block.timestamp >= self.endTime  as can be 
seen in function validateNotSettled.

However, price submissions are restricted with block.timestamp > epoch.endTime within function 
validateSubmission.

When the block.timestamp == epoch.endTime, prices can be submitted since market activity is 
disallowed at that point, but submissions are restricted with current validation.

Recommendation

Adjust the validations appropriately within the UMASettlementModule or clearly document this 
behavior as this is extremely edgecase behavior.

Resolution

Foil Team: The issue was resolved in PR#169.

49

Category Severity Location Status

Typo ●  Low TradeModule.sol Resolved

https://github.com/foilxyz/foil/pull/169


Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular 
project or team. This report is not, nor should be considered, an indication of the economics or value 
of any “product” or “asset” created by any team or project that contracts Guardian to perform a 
security assessment. This report does not provide any warranty or guarantee regarding the absolute 
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies 
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with 
any particular project. This report in no way provides investment advice, nor should be leveraged as 
investment advice of any sort. This report represents an extensive assessing process intending to 
help our customers increase the quality of their code while reducing the high level of risk presented 
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s 
position is that each company and individual are responsible for their own due diligence and 
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of 
variance associated with utilizing new and consistently changing technologies, and in no way claims 
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services, 
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis. 
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk 
and uncertainty. The assessment reports could include false positives, false negatives, and other 
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external 
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any 
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of 
the audited smart contract, regardless of the verdict.

50



About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract 
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our 
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

51

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

