

Summary
 Audit Firm Guardian

 Prepared By Daniel Gelfand, Nicholas Chew, Zdravko Hristov,

 Osman Ozdemir, Mark Jonathas, Michael Lett

 Client Firm Foil

 Final Report Date January 13, 2025

Audit Summary
Foil engaged Guardian to review the security of its Vault, providing liquidity across the epoch's price
range. From the 19th of November to the 27th of November, a team of 6 auditors reviewed the
source code in scope. All findings have been recorded in the following report.

Issues Detected Throughout the engagement 4 High/Critical issues were uncovered and promptly
remediated by the Foil team. Several issues impacted the fundamental behavior of the protocol,
following their remediation Guardian believes the protocol to uphold the functionality described for
the Vault.

Security Recommendation Given the number of High and Critical issues detected, Guardian
supports a secondary security review of the Vault at a finalized frozen commit. Furthermore, the Foil
team should increase testing with various settlement scenarios which may present opportunities to
DoS the Vault’s operations.

For a detailed understanding of risk severity, source code vulnerability, and potential attack vectors,
refer to the complete audit report below.

🔗 Blockchain network: Ethereum

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/foil-fuzzing 2

https://github.com/guardianaudits
https://github.com/GuardianAudits/foil-fuzzing

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Invariants Assessed …………………………………………………………………... 7

Findings & Resolutions …………..…………………………….……………………… 11

Addendum

Disclaimer …………………………………………………………………..…………..… 49

About Guardian Audits ………………………………..………………………………… 50

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Foil

Language Solidity

Codebase https://github.com/foilxyz/foil

Commit(s) Initial commit: 5b3416a28dfaa24ba3844e10081e55425d0a286a
Final commit: faf7d3a296ad630ce0de70e84c2f067f59970286

Delivery Date January 13, 2025

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 2 0 0 0 0 2

 ● High 2 0 0 0 0 2

 ● Medium 14 0 0 3 0 11

 ● Low 17 0 0 9 0 8

https://github.com/foilxyz/foil

5

Vulnerability Classifications

Audit Scope & Methodology

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High ● Critical ● High ● Medium

Likelihood: Medium ● High ● Medium ● Low

Likelihood: Low ● Medium ● Low ● Low

Impact
High Significant loss of assets in the protocol, significant harm to a group of users, or a core
. functionality of the protocol is disrupted.

Medium A small amount of funds can be lost or ancillary functionality of the protocol is affected.
. The user or protocol may experience reduced or delayed receipt of intended funds.

Low Can lead to any unexpected behavior with some of the protocol's functionalities that is
. notable but does not meet the criteria for a higher severity.

Likelihood
High The attack is possible with reasonable assumptions that mimic on-chain conditions,
. and the cost of the attack is relatively low compared to the amount gained or the
. disruption to the protocol.

Medium An attack vector that is only possible in uncommon cases or requires a large amount of
. capital to exercise relative to the amount gained or the disruption to the protocol.

Low Unlikely to ever occur in production.

6

Audit Scope & Methodology

Methodology

Guardian is the ultimate standard for Smart Contract security. An engagement with Guardian entails
the following:

● Two competing teams of Guardian security researchers performing an independent review.
● A dedicated fuzzing engineer to construct a comprehensive stateful fuzzing suite for the

project.
● An engagement lead security researcher coordinating the 2 teams, performing their own

analysis, relaying findings to the client, and orchestrating the testing/verification efforts.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.

Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

 Invariants Assessed

7

During Guardian’s review of Foil, fuzz-testing with Echidna was performed on the protocol’s
main functionalities. Given the dynamic interactions and the potential for unforeseen edge
cases in the protocol, fuzz-testing was imperative to verify the integrity of several system
invariants.

Throughout the engagement the following invariants were assessed for a total of 5,000,000+
runs with a prepared Echidna fuzzing suite.

ID Description Passed Remediation Run Count

GLOBAL-01 The price of vGAS should always be in
range of the configured min/max ticks. ✅ ✅ 5M+

GLOBAL-02 There should never be any liquidity outside
of the [min, max] range of an epoch. ✅ ✅ 5M+

GLOBAL-03 The amount of vETH in the system, position
manager & swap router should equal the
max supply

✅ ✅ 5M+

GLOBAL-04 The amount of vGAS in the system, position
manager & swap router should equal the
max supply.

✅ ✅ 5M+

TRADE-01 The debt of a position should never be > the
collateral of the position. ✅ ✅ 5M+

TRADE-02 Long positions have their debt in vETH and
own vGAS ❌ ✅ 5M+

TRADE-03 Short positions have their debt in vGAS and
own vETH. ❌ ✅ 5M+

TRADE-04 Trader should never have both
borrowedVGas and borrowedVEth be
non-zero.

✅ ✅ 5M+

TRADE-05 Trader's pending loss in ETH-worth should
never exceed collateral put down (should
never be in negative equity)

❌ ✅ 5M+

https://github.com/crytic/echidna

Invariants Assessed

8

ID Description Passed Remediation Run Count

TRADE-06 after creating/modifying trade position, the
depositedCollateralAmount > debtValue -
tokensValue

✅ ✅ 5M+

TRADE-07 After creating a trade position deposited
collateral should be non-zero ✅ ✅ 5M+

TRADE-08 After user closes a trade position, no vGAS,
vETH, borrowed vGAS, borrowed vETH ✅ ✅ 5M+

TRADE-09 After creating a trader position, positionSize is
non-zero. ✅ ✅ 5M+

TRADE-10 createTradePosition should create a unique
positionId ✅ ✅ 5M+

LIQUID-01 The debt of a position should not be > the
collateral of the position. ✅ ✅ 5M+

LIQUID-02 A open LP position should not own any vETH
or vGAS. ✅ ✅ 5M+

LIQUID-03 After all LP positions have been closed, for the
remaining trader positions: net shorts == net
longs.

✅ ✅ 5M+

LIQUID-04 Position.depositedCollateralAmount should be
at least the required collateral for their position
if their position turned into a Trade type.

❌ ❌ 5M+

LIQUID-05 QuoteLiquidityPositionTokens should match
how many tokens are borrowed and how much
liquidity is added after creating an LP position
with createLiquidityPosition

✅ ✅ 5M+

LIQUID-06 After creating an LP position, liquidity in the
Uni pool increases ✅ ✅ 5M+

Invariants Assessed

9

ID Description Passed Remediation Run Count

LIQUID-07 After increasing an LP position, liquidity in
the Uni pool increases ✅ ✅ 5M+

LIQUID-08 After decrease an LP position, liquidity in
the Uni pool decreases ❌ ✅ 5M+

LIQUID-09 After partial decrease an LP Position,
should not get InsufficientColateral revert
(unexpected in this case)

❌ ✅ 5M+

LIQUID-10 createLiquidityPosition should create a
unique positionId ✅ ✅ 5M+

SETTLE-01 It should always be possible to settle all
positions after the epoch is settled. ❌ ✅ 5M+

SETTLE-02 After settlement with settlePosition,
position should not have any
borrowedvETH nor borrowedVGAS, and no
vGAS nor vETH (cleared out position)

✅ ✅ 5M+

SETTLE-03 Settlement should not revert with
ERC20InsufficientBalance. ❌ ✅ 5M+

SETTLE-04 Settlement should not panic underflow ❌ ✅ 5M+

EPOCH-01 Position with non zero loan amount for lp
should always have non-zero collateral
required.

✅ ✅ 5M+

VLT-01 Vault functions should never revert with
ERC20InsufficientBalance error ✅ ✅ 5M+

VLT-02 totalPendingDeposits should be sum of
deposit requests -
withdrawRequestDeposit(s)

❌ ✅ 5M+

Invariants Assessed

10

ID Description Passed Remediation Run Count

VLT-03 totalPendingWithdrawals should be sum of
requestRedeem(s) -
withdrawRequestRedeem(s)

❌ ✅ 5M+

VLT-04 pendingSharesToBurn should always be less
than or equal to total supply of shares ✅ ✅ 5M+

VLT-05 Pending transaction requested epoch should
never be greater than current epoch ✅ ✅ 5M+

VLT-06 Vault should not Panic ❌ ✅ 5M+

VLT-07 mint/deposit should decrease balance of
shares in the Vault contract, total supply
should stay the same

✅ ✅ 5M+

VLT-08 redeem/withdraw should decrease total supply ✅ ✅ 5M+

Findings & Resolutions

11

ID Title Category Severity Status

C-01 Total DoS Of Epochs DoS ● Critical Resolved

C-02 Bond Cannot Be Returned Logical Error ● Critical Resolved

H-01 tradeRatio Rounded In Wrong
Direction Rounding ● High Resolved

H-02 Faulty Quoting With Small
Amounts Logical Error ● High Resolved

M-01 Position With Zero Collateral Logical Error ● Medium Resolved

M-02 Inaccessible onlyOwner
Functions Access Control ● Medium Acknowledged

M-03 DoS Via Deposit Before First
Epoch DoS ● Medium Resolved

M-04 DoS Via Frontrunning Pool
Creation DoS ● Medium Resolved

M-05 Gas Griefing Of Epoch Creation Griefing ● Medium Resolved

M-06 Positions With 0 Collateral Logical Error ● Medium Resolved

M-07 Fee Collector Can Hoard Fees Logical Error ● Medium Acknowledged

M-08 Decreasing LP May Require
Collateral Logical Error ● Medium Acknowledged

M-09 vEth Credited When Closing A
Position Logical Error ● Medium Resolved

Findings & Resolutions

12

ID Title Category Severity Status

M-10 resolutionCallback Fails On
Small Amounts Logical Error ● Medium Resolved

M-11 Cleared borrowedVEth Logical Error ● Medium Resolved

M-12 Resetting Does Not Refund
Tokens Logical Error ● Medium Resolved

M-13 Collateral Of Epoch Ahead Can
Be Stolen Logical Error ● Medium Resolved

M-14 Tick Modulus Hardcoded For Fee
Tier Logical Error ● Medium Resolved

L-01 Single Vault Circuit Should Not
Skip Iteration Logical Error ● Low Acknowledged

L-02 Overflow In DecimalPrice Library Overflow ● Low Resolved

L-03 Deposit/Withdraw On Behalf Of
Others Access Control ● Low Acknowledged

L-04 New Vaults Cannot Be Added Warning ● Low Acknowledged

L-05 minCollateral Redeem
Denomination Validation ● Low Acknowledged

L-06 Cheaper Settlement Delay Logical Error ● Low Acknowledged

L-07 Insufficient Balance For Last
Withdrawer Logical Error ● Low Resolved

L-08 Consider Adding Exception
Handling Mechanisms Logical Error ● Low Resolved

Findings & Resolutions

13

ID Title Category Severity Status

L-09 minTradeSize For Liquidty
Turned Trade Logical Error ● Low Acknowledged

L-10 Traders Unable To Close
Profitable Position Logical Error ● Low Acknowledged

L-11 Epoch startTime Not Utilized Logical Error ● Low Resolved

L-12 Incorrect Error String Logical Error ● Low Resolved

L-13 Pending Functions Might Be
Misleading Informational ● Low Resolved

L-14 Insufficient Trade Size Validation Validation ● Low Resolved

L-15 Fee Collectors Can Make
Unbacked Trade Positions Logical Error ● Low Acknowledged

L-16 Negative Ticks Are Rounded Up Logical Error ● Low Acknowledged

L-17 Vault Is Not EIP Compliant EIP ● Low Resolved

C-01 | Total DoS Of Epochs

Description

Users can create redemption requests for their vault shares using the requestRedeem function,
which will increase the totalPendingWithdrawals variable. The only requirement regarding the
request amount is that the users' balance must be sufficient.

Users’ shares are neither transferred nor burned at the creation of the request. Since these shares
are transferable, a user can create a request using requestRedeem, transfer shares to another
address, create another request, and repeat this process as many times as desired.

As a result, totalPendingWithdrawals will be inflated. This allows users to manipulate
pendingSharesToBurn and totalSupply, or even cause a complete DoS in the system due to an
underflow here in the _reconcilePendingTransactions function.

Recommendation

The redeem workflow should transfer tokens during the request creation process, similar to the
deposit flow.

The requestRedeem function should transfer shares from the user to the vault. And then, the
_redeemShares function should burn these shares from the vault instead of burning from the owner.

Resolution

Foil Team: The issue was resolved in PR#193.

14

Category Severity Location Status

DoS ● Critical Vault.sol: 604-619 Resolved

https://github.com/GuardianAudits/foil-1/blob/5b3416a28dfaa24ba3844e10081e55425d0a286a/packages/protocol/src/vault/Vault.sol#L301C13-L307C15
https://github.com/foilxyz/foil/pull/193

C-02 | Bond Cannot Be Returned

Description

When submitMarketSettlementPrice is called in Vault.sol, the vault is set as the asserter in the UMA
oracle. Upon successful settlement of the assertion price, the bond is returned to the vault.

However, there is no mechanism to refund this bond to the user who submitted the price and paid for
it. Additionally, there is no recovery function, causing the bond to remain permanently stuck in the
vault.

Recommendation

In UMASettlementModule.submitSettlementPrice, allow the caller to specify an address to be set as
the asserter. Then, in Vault.submitMarketSettlementPrice, ensure the caller’s address is passed as
the asserter to enable proper bond refunds.

Resolution

Foil Team: The issue was resolved in PR#181.

15

Category Severity Location Status

Logical Error ● Critical Vault.sol: 133 Resolved

https://github.com/foilxyz/foil/pull/181

H-01 | tradeRatio Rounded In Wrong Direction

Description

The recommendation of H-03 is to round up the trade ratio when going towards the long direction as
a short. However, the fix implemented is the opposite - the trade ratio is being rounded down if
isLongDirection and rounded up otherwise. Since the problem is not solved, the insolvency issue still
exists.

Currently, tradeRatioD18 is used to compute both closePnL and vEthAmount/borrowedVEth. Foil's
goal should always be to maximize borrowedVEth and minimize closePnL and vEthAmount. Because
of this, different rounding directions should be used depending on what's being calculated.

Recommendation

The end goal should be to maximize the borrowedVEth and minimize the vEthAmount and closePnL.
To accomplish this, you can have two different tradeRatios - one rounded down and one rounded up.
You will also have three different vEthToZero.

The first one will be to calculate the closePnL and you will use the tradeRatio that’s rounded down if
the position is a long, otherwise use the rounded up one. The second vEthToZero will always use the
tradeRatio that’s rounded down and the third vEthToZero will always use the tradeRatio that’s
rounded up.

Next, you will also have two different vEthFromZero for each vEthToZero. Finally, in the if/else
statement where you set borrowedVEth and vEthAmount you will choose the appropriate
vEthFromZero.

For the if case you should use the vEthFromZero which absolute value is bigger to maximize borrow
and for the else case you should use the vEthFromZero which absolute value is smaller to minimize
the credited vETH.

Resolution

Foil Team: The issue was resolved in PR#198. 16

Category Severity Location Status

Rounding ● High TradeModule.sol Resolved

https://www.notion.so/H-03-1348bda5828c810ba6bbe5baf4a7ed02?pvs=21
https://github.com/foilxyz/foil/pull/198

H-02 | Faulty Quoting With Small Amounts

Description

When a new epoch is created, the Vault uses the assets in its reserves to deposit them as collateral
in order to create a liquidity position. The vault will call quoteLiquidityPositionTokens to get the
amount0 and amount1 that can be added as liquidity for the available collateral.

However, Epoch.requiredCollateralForLiquidity() now adds 1 to loanAmount0 and loanAmount1. This
means the actual required collateral for the position may exceed the available collateral in the vault.

In result, the transaction will revert because of InsufficientCollateral() and the epoch creation will not
be successful. This issue can occur with non-trivial amounts, for example 1e17.

Recommendation

Consider implementing higher minimum collateral amounts and documenting this behavior for
clarity. Another option to consider is subtracting 1 wei from amount0 and amount1 when creating
the LiquidityMintParams, which should account for the additional 1 wei.

Resolution

Foil Team: The issue was resolved in PR#197.

17

Category Severity Location Status

Logical Error ● High LiquidityModule.sol Resolved

PoC

https://github.com/foilxyz/foil/pull/197
https://github.com/GuardianAudits/foil-fuzzing/commit/800a5b927bd0668f6eacb37158a3dc079de9d7f0

M-01 | Position With Zero Collateral

Description

When a position is operating with small amounts, the required collateral for the position can be
calculated to be zero due to rounding when calculating value of debt. Consequently, a user can
modify their position to a size within a couple thousand wei and have to provide zero collateral.

All their prior deposited collateral would be returned, and their position would have no backing. In the
original review, this issue was not possible since the minimum requiredCollateral was always at least
2 wei.

Recommendation

Have a minimum required collateral.

Resolution

Foil Team: The issue was resolved in PR#198.

18

Category Severity Location Status

Logical Error ● Medium TradeModule.sol Resolved

PoC

https://github.com/foilxyz/foil/pull/198
https://github.com/GuardianAudits/foil-fuzzing/commit/defacd8f629985c2c446dd481b5a078be7990f68

M-02 | Inaccessible onlyOwner Functions

Description

Since the Vault contract will be executing the onlyOwner createEpoch() function, it will be set as the
owner of the foil system. The ConfigurationModule.updateMarket() function can be called by the Foil
owner to update the market parameters.

However, this function is never called in the Vault contract. This means the market can never be
updated once the ownership is transferred to the contract. There is also no call to transferOwnership
in Vault, so you can't just use a new vault as the owner.

Recommendation

Add calls to updateMarket and transferOwnership in the vault.

Resolution

Foil Team: We are keeping everything immutable.

19

Category Severity Location Status

Access Control ● Medium Vault.sol Acknowledged

M-03 | DoS Via Deposit Before First Epoch

Description

Deposits before the first epoch are possible, with a minimum deposit amount of 1e3. Any pending
deposits before the first epoch are utilized to establish the initial liquidity position within the
_createNewLiquidityPosition function.

This function deducts a dust amount of 1e4 from the deposited collateral amounts. If a user
intentionally deposits an amount between 1e3 and 1e4 before the first epoch, and there are no other
deposits, the initialization will fail due to underflow at this line.

Recommendation

Consider setting the minimum deposit amount higher than the dust. Alternatively, keep the codebase
unchanged but externally deposit the difference if this situation occurs.

Resolution

Foil Team: The issue was resolved in PR#197.

20

Category Severity Location Status

DoS ● Medium Vault.sol: 341 Resolved

https://github.com/GuardianAudits/foil-1/blob/5b3416a28dfaa24ba3844e10081e55425d0a286a/packages/protocol/src/vault/Vault.sol#L341
https://github.com/foilxyz/foil/pull/197

M-04 | DoS Via Frontrunning Pool Creation

Description

After the implementation of the Vault, epoch settlements and the creation of the new epoch happens
at the same transaction via callbacks. Because of this atomic behavior, failure of the pool creation
for the next epoch will DoS the settlement of the previous epoch.

An attacker can precompute the virtual token addresses and create the Uniswap pool with these
addresses as creating pools is permissionless in the Uniswap. This will cause Epoch.createValid
function to revert while calling IUniswapV3Factory.createPool due to
require(getPool[token0][token1][fee] == address(0)) check in the factory.

The attack can cause complete blocking of the epoch settlements and creations. However, attackers
must keep frontrunning and create new pools every time someone tries to settleAssertion in the
optimistic oracle.

Recommendation

Check whether the pool already exists or not by calling the getPool in the factory instead of directly
calling the createPool. If the pool already exists, check whether it was already initialized or not and
set the starting price. Alternatively, always make sure to use a private RPC to prevent frontrunning.

Resolution

Foil Team: The issue was resolved in PR#209.

21

Category Severity Location Status

DoS ● Medium Epoch.sol: 145 Resolved

https://github.com/Uniswap/v3-core/blob/d8b1c635c275d2a9450bd6a78f3fa2484fef73eb/contracts/UniswapV3Factory.sol#L45
https://github.com/foilxyz/foil/pull/209

M-05 | Gas Griefing Of Epoch Creation

Description

When a new epoch is created, block.timestamp is used as the salt for generating two virtual tokens.
In _createVirtualToken, a loop probes for an available salt if a collision occurs.

However, the salt increments by 1 on each iteration, making it highly predictable and susceptible to
front-running. An attacker can exploit this predictability to deliberately create collisions.

During testing, each iteration of the loop was found to cost approximately 600k gas, making it
feasible for an attacker to force the epoch creation process to fail due to an Out-of-Gas error.

Recommendation

Consider using a less predictable and more robust mechanism for generating the salt, such as
hashing with block variables. Alternatively, consider using CREATE3 which ensure that the address is
only dependent on deployer and salt.

Resolution

Foil Team: The issue was resolved in PR#197.

22

Category Severity Location Status

Griefing ● Medium Epoch.sol: 206 Resolved

https://github.com/foilxyz/foil/pull/197

M-06 | Positions With 0 Collateral

Description

When a position is operating with small amounts, the required collateral for the position can be
calculated to be zero due to rounding when calculating value of debt. Consequently, a user can
modify their position to a size within a couple thousand wei and have to provide zero collateral.

All their prior deposited collateral would be returned, and their position would have no backing. In the
original review, this issue was not possible since the minimum requiredCollateral was always at least
2 wei.

Recommendation

Have a minimum required collateral.

Resolution

Foil Team: The issue was resolved in PR#198.

23

Category Severity Location Status

Logical Error ● Medium TradeModule.sol Resolved

https://github.com/foilxyz/foil/pull/198

M-07 | Fee Collector Can Hoard Fees

Description

M-01 of the previous audit was not addressed. Fee collectors can create under-collateralized
positions and collateralize them using depositCollateral.

Currently, there are no restrictions preventing a fee collector from creating an oversized liquidity
position, which can monopolize all available liquidity and hoard fees, preventing other fee collectors
from benefiting.

Recommendation

Impose limits on the size of liquidity positions that fee collectors can create to ensure fair
distribution of fees.

Resolution

Foil Team: Acknowledged.

24

Category Severity Location Status

Logical Error ● Medium LiquidityModule.sol Acknowledged

M-08 | Decreasing LP May Require Collateral

Description

The M-05's recommendation to let the user specify an amount of collateral to be added when
decreasing a liquidity position has not been implemented which leaves the problem unsolved.

Recommendation

Allow the user to supply additional collateral when decreasing their position.

Resolution

Foil Team: Letting users know to decrease by larger than a few wei is acceptable due to this
rounding issue.

25

Category Severity Location Status

Logical Error ● Medium Epoch.sol Acknowledged

PoC

https://www.notion.so/M-05-1348bda5828c81c086e6d49037558a91?pvs=21
https://github.com/GuardianAudits/foil-fuzzing/pull/7

M-09 | vEth Credited When Closing A Position

Description

When closing a position, the vEthToZero is calculated as initialSize * tradeRatio and should be equal
to the signedTradedVEth. However, Solidity division truncates the result. Because of this, tradeRatio
will be slightly off - both when rounded down or up - therefore vEthToZero as well.

Even though vEthFromZero should be roughly equal to targetSize * tradeRatio, the value assigned to
it (for targetSize = 0) will be non-zero - positive or negative depending on the rounding. After that the
absolute value of vEthFromZero will be assigned to vEthAmount.

In result, closed positions end up having positive vEthAmount, which is especially bad for long
positions. This ultimately leads to an undercollateralized market, preventing the last user from
settling.

Recommendation

Consider setting the vEthAmount of the new position to 0, if its size is 0 as well.

Resolution

Foil Team: The issue was resolved in PR#198.

26

Category Severity Location Status

Logical Error ● Medium TradeModule Resolved

PoC

https://github.com/foilxyz/foil/pull/198
https://github.com/GuardianAudits/foil-fuzzing/commit/c6d9b52b12a46e0a52f31ef28ecf343980b9ec01

M-10 | resolutionCallback Fails On Small Amounts

Description

Function _createEpochAndPosition passing is critical to the Vault's flow, since if the
resolutionCallback fails the Vault's functionality is stopped. If the Vault has more collateral than the
current minimum collateral, the Vault attempts to _createNewLiquidityPosition.

The issue is that even with enough collateral to meet the minimum threshold, is it not guaranteed
that the liquidity to-be minted from the calculated amount0 and amount1 is greater than 0 due to
Uniswap rounding down on small amounts, which would trigger a revert in UniswapV3Pool.mint:
require(amount > 0);

Ultimately, the Vault will attempt to mint which will revert, causing the callback to fail and the
mints/epoch creation will not occur.

Recommendation

Consider enforcing a higher minimum collateral.

Resolution

Foil Team: The issue was resolved in PR#197.

27

Category Severity Location Status

Logical Error ● Medium Vault.sol Resolved

https://github.com/foilxyz/foil/pull/197

M-11 | Cleared borrowedVEth

Description

When a long position is being modified, its borrowedVEth is set to the absolute value of
vEthFromZero. In some cases, it's possible to have a small amount of vGasAmount with 0
vEthFromZero due to the traded vETH matching the vEthToZero, primarily when operating with small
position sizes and trade prices.

This leads to a long position that does not have a loaned amount. This leaves the Foil contract with
less available collateral than it should have and in result, the last user will not be able to exit.

Recommendation

Validate that any opened long position has positive borrowedVEth: require(borrowedVEth > 0)

Resolution

Foil Team: The issue was resolved in PR#198.

28

Category Severity Location Status

Logical Error ● Medium TradeModule Resolved

PoC

https://github.com/foilxyz/foil/pull/198
https://github.com/GuardianAudits/foil-fuzzing/blob/22f09a942e332c3e37c724943ce8f1635cc35e2f/packages/protocol/test/fuzzing/FoundryPlayground.sol#L42

M-12 | Resetting Does Not Refund Tokens

Description

When a user calls withdrawRequestRedeem(), if their balance after is less than minimumCollateral
then resetTransaction() will set their pending amount to zero. However, totalPendingWithdrawals will
only be decremented by the amount of shares the user passes in.

This will lead to totalPendingWithdrawals being larger than the actual amount that is intended to be
withdrawn. A malicious user could continuously call requestRedeem() in conjunction with
withdrawRequestRedeem in order to inflate totalPendingWithdrawals to be larger than
collateralFromPreviousEpoch plus totalPendingDeposits.

This will cause a DoS via underflow when _reconcilePendingTransactions() is called. Additionally,
when a user calls withdrawRequestDeposit(), totalPendingDeposits is only decremented by assets.
This will lead to the user’s remaining tokens to be donated to other users of the protocol.

Recommendation

If the user’s remaining amount is less than the minimumCollateral, then decrement
totalPendingWithdrawals by the full amount or refund the remainder of their balance before calling
resetTransaction(), depending on if it is a redeem or deposit.

Resolution

Foil Team: The issue was resolved in PR#197.

29

Category Severity Location Status

Logical Error ● Medium Vault: 649 + 530 Resolved

PoC

https://github.com/foilxyz/foil/pull/197
https://github.com/GuardianAudits/foil-2/compare/rd2-remediations...POC_DOS_MIN_COLLAT?expand=1#diff-4fe03eaa0c5a23c3854772730dd5ca9a0a7de11d8d7e4394a623f6cf2b5496e5

M-13 | Collateral Of Epoch Ahead Can Be Stolen

Description

When updating share price after an epoch, if no collateral was received, the share price is set to
1e18. This creates a significant issue as depositors can redeem their entire collateral even though no
collateral was received after closing the liquidity position.

Effectively, this allows depositors to withdraw funds that belong to the next epoch's depositors, who
have already transferred their collateral into the contract.

Recommendation

Initially, setting sharePrice to 0 instead of 1e18 was considered. However, this would affect the
minting of new shares for the next epoch.

As a solution, if no collateral is received, set the sharePrice for the current epoch to 0 while ensuring
the sharePrice for the next epoch is reset to 1e18.

Resolution

Foil Team: The issue was resolved in PR#197.

Guardian Team: The issue was not fixed. The price of the epoch is hardcoded to 1e18 if no collateral
is received.

Foil Team: Let’s halt the vault and allow a request deposit of something higher than 1e8 which will fix
this.

30

Category Severity Location Status

Logical Error ● Medium Vault.sol: 288 Resolved

https://github.com/foilxyz/foil/pull/197

M-14 | Tick Modulus Hardcoded For Fee Tier

Description

_calculateTickBounds() uses modulus 200 in order to set the target tick value to the closest
acceptable tick range. However, Foil is compatible with multiple fee tiers, but the value 200 is not.

For instance, the 0.3% fee tier uses a tick spacing of 60, which is not a divisor of 200. This will cause
a revert when attempting to create the epoch.

Recommendation

Instead of hardcoding 200, use the appropriate value for the fee tier of the pool.

Resolution

Foil Team: The issue was resolved in PR#197.

31

Category Severity Location Status

Logical Error ● Medium Vault: 273, 276 Resolved

https://github.com/foilxyz/foil/pull/197

L-01 | Single Vault Circuit Should Not Skip Iteration

Description

In _calculateNextStartTime, if there is a significant delay in resolving an epoch, the vault skips an
entire vaultCycleDuration to maintain synchronization with other vaults in the circuit.

However, if only a single vault exists in the circuit, this synchronization is unnecessary. Skipping
vaultCycleDuration in this scenario causes unnecessary downtime where no vaults are available.

Recommendation

Introduce a condition to check if only one vault exists in the circuit. In such cases, avoid skipping the
vaultCycleDuration and instead start the next epoch immediately after resolution.

Resolution

Foil Team: Acknowledged.

32

Category Severity Location Status

Logical Error ● Low Vault.sol: 233 Acknowledged

L-02 | Overflow In DecimalPrice Library

Description

There is a comment left on L-02 that Foil now uses OpenZeppelin's code for its calculations, but the
code in DecimalPrice is not changed - it's still possible for the result of the multiplication to exceed
2^256-1

Recommendation

Fix the issue.

Resolution

Foil Team: The issue was resolved in PR#202.

33

Category Severity Location Status

Overflow ● Low DecimalPrice.sol Resolved

https://www.notion.so/L-02-1348bda5828c8199bc6cd85a37b95945?pvs=21
https://github.com/foilxyz/foil/pull/202

L-03 | Deposit/Withdraw On Behalf Of Others

Description

In the Vault contract, only the owners can request deposits and redemptions. However, claiming of
these requests are external and anyone can claim on behalf of the owner.

Even though the owner created these requests, timing of the claim might matter for the owner and
these actions should be access controlled.

Recommendation

Not allow other users to claim on behalf of owners.

Resolution

Foil Team: I don’t think there’s any advantage to claiming after the epcoh is settled, if anything, these
functions not being gated gives us flexibility to force redemptions to clear any pending txns.

34

Category Severity Location Status

Access Control ● Low Vault.sol Acknowledged

L-04 | New Vaults Cannot Be Added

Description

totalVaults is stored as an immutable variable when Vault.sol is created. This implies that no new
vaults can be added after the first batch of vaults. This may run counter to protocol design that new
collateral types may be added.

Recommendation

Consider allowing for new vaults to be added.

Resolution

Foil Team: At least the plan right now is not to add any more vaults once a vault is initialized.

35

Category Severity Location Status

Warning ● Low Vault.sol Acknowledged

L-05 | minCollateral Redeem Denomination

Description

Vault.requestRedeem requires the amount of shares being redeemed to be greater than
minimumCollateral. However, minimumCollateral is denominated in assets, not shares.

Recommendation

Consider having different validation with the proper denomination.

Resolution

Foil Team: Maybe a rename of the variable would be better. Will do that.

36

Category Severity Location Status

Validation ● Low Vault.sol Acknowledged

L-06 | Cheaper Settlement Delay

Description

As pointed out in this issue, anyone can dispute rightful assertions to delay the start of a given
epoch by paying the bond of $5000.

Since now anyone can submit a price, the same entity can assert a rightful price and dispute it at the
same time towards the end of the assertionLiveness period.

By doing so, they will receive half of their disputer bond. In result, the cost of the attack will be
reduced from $5000 to $2500.

Recommendation

Be aware of the reduction in cost.

Resolution

Foil Team: Acknowledged.

37

Category Severity Location Status

Logical Error ● Low Global Acknowledged

https://www.notion.so/L-07-128139f958764a92a922a4924d46b493?pvs=21

L-07 | Insufficient Balance For Last Withdrawer

Description
The last user attempting to settle their position may be unable to do so if:
market.collateralAsset.balanceOf(address(this)) < withdrawableCollateral.

This discrepancy can occur due to minor rounding errors during trade or liquidity activities, leaving
the contract balance short by a few wei. As a result, the user cannot fully recover their collateral.

Recommendation

If market.collateralAsset.balanceOf(address(this)) is less than withdrawableCollateral, consider
transferring the remaining contract balance to the user instead.

This ensures the user can recover as much of their collateral as possible without leaving residual
funds in the contract.

Resolution

Foil Team: The issue was resolved in PR#202.

38

Category Severity Location Status

Logical Error ● Low SettlementModule.sol Resolved

https://github.com/foilxyz/foil/pull/202

L-08 | Consider Adding Exception Handling Mechanisms

Description

With the implementation of the Vault contract, the settlement of the previous epoch and the creation
of the next epoch happen in a single transaction.

Because of this, an unexpected failure at any step of the process (e.g., settlement, new epoch
creation, quoting, or adding new liquidity) may cause the system to halt.

Recommendation

Consider implementing mechanisms like try/catch blocks along the transaction flow, allowing
unexpected issues to be resolved externally and ensuring the system remains operational.

Resolution

Foil Team: The issue was resolved in PR#209.

39

Category Severity Location Status

Logical Error ● Low Global Resolved

https://github.com/foilxyz/foil/pull/209

L-09 | minTradeSize For Liquidty Turned Trade

Description

When closing a liquidity position, it can turn into a Trade position if it cannot be repaid. If the amount
left for the new Trade position is less than the minTradeSize, the owner of the position will not be
able to directly close it.

They will have to make a bigger trade and close if after that. By doing so, they suffer losses because
of price impacts.

Recommendation

Be sure to warn the users of Foil about this case.

Resolution

Foil Team: Acknowledged.

40

Category Severity Location Status

Logical Error ● Low TradeModule.sol Acknowledged

L-10 | Traders Unable To Close Profitable Position

Description

L-20 of the previous audit was not addressed. Fee Collectors opened LP positions at the beginning
of an epoch and deposit collateral after they've earned fees. This collateral could be streamed in
periodically or provided in bulk at settlement.

Due to the under-collateralized LP positions, traders may find themselves unable to exit profitable
positions until Fee Collectors deposit collateral. As Fee Collectors are expected to hold large LP
positions, this may affect a large group of traders.

This leads to temporarily locked funds and potential loss of yield for traders who are unable to close
a profitable position promptly.

Recommendation

Consider implementing a minimum deposit amount for fee collectors. Or else, document this risk for
users.

Resolution

Foil Team: Acknowledged.

41

Category Severity Location Status

Logical Error ● Low Global Acknowledged

L-11 | Epoch startTime Not Utilized

Description

Epochs in Foil have startTime. However, liquidity and trades for a given epoch can be executed as
soon as the epoch is created, no matter its startTime.

Recommendation

Be aware of this behavior.

Resolution

Foil Team: The issue was resolved in PR#202.

42

Category Severity Location Status

Logical Error ● Low Epoch.sol Resolved

https://github.com/foilxyz/foil/pull/202

L-12 | Incorrect Error String

Description

"Previous deposit request is not in the same epoch" message in the withdrawRequestRedeem
function (L642) should be "Previous withdraw request is not in the same epoch".

Recommendation

Change the error string in the require statement.

Resolution

Foil Team: The issue was resolved in PR#202.

43

Category Severity Location Status

Logical Error ● Low Vault.sol: 642 Resolved

https://github.com/foilxyz/foil/pull/202

L-13 | Pending Functions Might Be Misleading

Description

Vault contract has pendingDepositRequest and pendingRedeemRequest functions. However, these
functions do not check the transaction type of the pending request and directly return
userPendingTransactions[owner]. pendingDepositRequest function can return a redeem request and
vice versa.

Recommendation

Consider checking the transaction type in these functions, or implement a single function (e.g.
pendingRequest) for all transaction types.

Resolution

Foil Team: The issue was resolved in PR#202.

44

Category Severity Location Status

Informational ● Low Vault.sol: 543, 662 Resolved

https://github.com/foilxyz/foil/pull/202

L-14 | Insufficient Trade Size Validation

Description

A minTradeSize configuration has been added to the Market in response to L-15. This works fine for
createTraderPosition, but it's wrongly implemented in modifyTraderPosition. It calls
_checkTradeSize(size) to ensure the trade size is bounded.

However, the argument passed is size (the final size), not deltaSize. Because of this, small trades
(below the minTradeSize) will still be successfully executed.

Recommendation

Pass deltaSize instead of size to _checkTradeSize to ensure trades are beyond a minimum delta.

Furthermore, consider also validating the resulting size of the position, such that situations do not
arise where a user creates a large position, decreases by position size-1, such that the delta trade
size is large enough but the final position size is 1 wei.

Resolution

Foil Team: The issue was resolved in PR#198.

45

Category Severity Location Status

Validation ● Low TradeModule.sol Resolved

https://www.notion.so/L-15-1348bda5828c81fb9501d5e11faf3139?pvs=21
https://github.com/foilxyz/foil/pull/198

L-15 | Fee Collectors Can Make Unbacked Trade Positions

Description

Because the fee collector is not required to deposit collateral for their position, situations can arise
where fee collectors close their liquidity position yet the the resulting position will become a Trade
position with non-zero borrowed amounts but zero credit amounts.

This is because fee collectors will typically enter the following case if
(position.depositedCollateralAmount < collateralDelta) due to no collateral requirements which will
set a non-zero borrowedvETH.

Consequently, an unbacked Trade position may be created that cannot be directly decreased and
closed, since the deltaSize would be zero and Errors.DeltaTradeIsZero() would be triggered.

Recommendation

Clearly document this behavior and even consider if FeeCollectors should close their LP positions
before epoch settlement as this allows them to profit without ever depositing collateral.

Resolution

Foil Team: Acknowledged.

46

Category Severity Location Status

Logical Error ● Low LiquidityModule.sol Acknowledged

PoC

https://github.com/GuardianAudits/foil-fuzzing/commit/35b17f081e3d6fe9413e784c3563b8c4c5be0248

L-16 | Negative Ticks Are Rounded Up

Description

During epoch creation, in _calculateTickBounds positive ticks are rounded down but negative ticks
are rounded up, which could lead to unexpected behavior.

Recommendation

Consider rounding down negative ticks for consistency or clearly documenting this behavior.

Resolution

Foil Team: Acknowledged.

47

Category Severity Location Status

Logical Error ● Low Vault.sol: 271 Acknowledged

L-17 | Vault Is Not EIP Compliant

Description

Multiple functions in the Vault are not EIP compliant.

• totalAssets: Must not revert. However, it can revert if the positionId is not valid.
• convertToShares: Must not revert. However, it can revert if totalAssets == 0.
• preview functions: Must be as close as possible to on-chain conditions and must not revert based
on vault specific user/global limits. May only revert that would also cause mint/withdraw etc. to
revert too. However, these function are not supported at all.
• deposit: Mints shares by depositing exactly assets amount. However, the amount is ignored in the
codebase.
• mint: Mints exactly the shares amount. However, the amount is ignored in the codebase.
• withdraw: Burns shares and sends exactly the assets amount. However, the amount is ignored in
the codebase.
• redeem: Burns exactly the shares amount. However, the amount is ignored in the codebase.

The contract incorrectly signals supporting the ERC4626 interface with the supportsInterface
function.

Recommendation

One option is trying to make the contract EIP compliant. However, based on what the contract wants
to achieve, it might be best to not support ERC4626.

Consider removing interfaceId == type(IERC4626).interfaceId line from the supportsInterface
function to prevent incorrect signaling for the external integrators.

Resolution

Foil Team: The issue was resolved in PR#202.

48

Category Severity Location Status

EIP ● Low Vault.sol Resolved

https://github.com/foilxyz/foil/pull/202

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

49

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

50

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

